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Quantum Frenkel-Kontorova model: A squeezed state approach
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The squeezed state is used to study the one-dimensional quantum mechanical Frenkel-Kontorova model. A
set of coupled equations for the particle’s expectation value and the fluctuations for the ground state are
derived. It is shown that quantum fluctuations renormalize the standard map to an effective sawtooth map. The
underlying mechanism provides an alternative and simple explanation of dynamical localization in quantum
chaos[S1063-651X98)50610-1

PACS numbg(s): 05.45:+b, 03.65.Sq, 05.30.Jp, 42.50.Dv

The Frenkel-KontorovdFK) model describes an atomic Here,m is the mass of particley is the elastic constant of the
chain, connected by harmonic springs, subjected to an extespring, and 2r/qq is the period of external potential.is the
nal sinusoidal potential. This model has been widely used tatrength of the external potential ardis the equilibrium
model the crystal dislocatiord], adsorbed epitaxial mono- distance between two nearest neighbor particles as the exter-
layers[2], and incommensurate structuf@d. The existence nal potential vanishes. For convenience, we can rescale the
of two competing periodicities may lead to a rich behavior ofvariables into dimensionless ones and obtain a new Hamil-
the state configurational properties of the partidfles The  tonian,
application of the FK model to the study of transmission in
Josephson junction and atomic-scale friction-nanoscale tri- . |5i2 . . N
bology, in which the quantum effects are very essential, has H=2> >+ E(Xiﬂ—xi—ﬂ)z— KcogX)|, (2
been witnessed in recent yedks. '

For a deep understanding of the nanoscale tribology, it .'%NhereK=Vq§/y is the rescaled strength of the external po-
very necessary to study the quantum FK model. However, in" ] ~ ) )
contrast to the classical FK model, up to now only a fewtential. The effective Planck constaf=7:(qg/ Jmy), is the
works have been devoted to the effects of the quantum flud2tio of the natural quantum energy scateu) to the natu-
tuations in the FK mode]6,7]. ral classical energy scaley(ds), wherewg=y/m.

Like thermal fluctuations in classical systems at finite The position and momentum operators for itieparticle
temperatures, quantum fluctuations play a very importan@re written as
role in quantum systems with finitg. In particular, they
become crucial and very important at zero temperature, when - \/Z At oa
thermal fluctuations vanish. The study of quantum fluctua- Xi= 5 (aj +a),
tions becomes an important topic in quantum phase transi-
- ()
tions[8] and quantum chaos. ~

Among many useful tools in study of quantum fluctua- P =i ﬁ (af-a)
tions, the squeezed state, which is a generalization of the ' 27
coherent state, has been proven to be very useful in dealing A A
with many-body problemf9,10]. In this Rapid Communica- Here,a anda; are boson creation and annihilation opera-
tion, we shall study the effect of quantum fluctuations in thetors, which satisfy the canonical commutation relations:
one-dimensional FK model by using the squeezed state ap3, ,éj‘r]: Sij» [3 'éj]zoi and[a/ ,éjf]:o_
proach. As we shall see later, a set of coupled equations for The squeezed stald) is defined by the ordinary har-

the expectation value and the fluctuation of the particle W”.Imonic oscillator displacement operate®® acting on a
be derived for the ground state at zero temperature. We dis-
. : : squeezed vacuum state,

cover analytically how quantum fluctuations renormalize the
external potential, which leads to the transition of the stan-
dard map in the classical FK model, to the sawtooth map in
the quantum FK model. The results are found to be in gooqNhere
agreement with that of the quantum Monte Caf@MC)
method.

The Hamiltonian operator of the one-dimensional stan- S(a)=2, (a;a] — af &),
dard FK model is ‘

|D(a,B))y=€5eTB)|0), (@

. ()
A PPy - . O P SRR
H=2 | 5+ 5= xi—a)?=V codaox) | (1) T(B)=3 2 (alBjaj~apia).
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o) is the vacuum state anda|0)=0. Sf(a)
=—Y(a), T (B)=—T(B). For simplicity, in what follows
we will use the abbreviatiofd)=|®(«,B)).
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It must be noted that if we s@=0, the squeezed state is
reduced to the coherent state. As we shall see later, the co-
herent state is not able to allow us to study the fluctuations.

1 _ 1 -
+2i E(Xi+1_xi_ﬂ)2+2i E[ﬁ(Gii+Gi+1i+l)

Using|®) as a trial wave function for Hamiltonia®), we

can easily find the expectation values of the coordinate and

the momentum operators of thth particle[9],

X =(@[X| @)= \@mrmi),

— . _[A
Pi=(®|P;|®)=—i \/; (af —a).

(6)

Fluctuations in the coordinate and the momentum are given

by
AXZ=(D|(X—X)2|®) =1 Gy ,
AP?=(®|(P;—P;)?|®), 7

-1

_[ Gy
:ﬁ %"‘4% HilleHki .

The fluctuation covariance between thh particle and the
jth particle is

AXAX=(D(X; = X)(X;=X))|®)=7Gy;, (8§

whereG;; andll;; are

1 1
GijZE(COSH VBB + sinkf VBB )ij+§(Mﬂ+BTM)ijl

=G M=), ©

where

M= sinh {BB" cosh\BB
VBB '

Sinceg is a symmetric matrixG;; = G;; andIl;; =11} . Fur-
thermore, using the following very important relation,

(10

<d>|cos§(i|d>)=exp(—ZG“)COSZ, (11

- 7 _
—2hGi]l- 2 K exp( - EG“)cosxi. (12)

It is worth noting that the variableX; and P;, andG;;
and IT;; form explicitly canonical conjugatesl0]. To find
the ground state of the quantum FK model, we shall take a
variational approach, and these four variables are regarded as

variational variables. Variation with respectE} immedi-
ately yieldsP;=0 and, with respect t¥;, yields

Xi11—2X;+X;_1=K; sin X;, (13
whereK;=K exd —(%#/2)G;;], which determines the expec-
tation value of the particle’s coordinate. Unlike its classical
counterpari{% =0, K;=K), this equation is coupled with the
quantum fluctuation by G;; . Since we are considering the
static problem, the variation with respect Ib; leads to

2 Gkl ;=0. To obtain equation foG;; , we first take the
variation with respect t&;, and note the following relation:
0Gjj 1 6Gy = 69 , whereds and 6;, are Diracé functions.
We then multiply both sides of the equation By; and take
the summation ovek. Finally, we get the closed equations
for the covariances;; ,

(GF)ij=Gi_1j+Gjyqj, (14)

where

(G_z)ij

Fi 5

Ki  —
=5ij(1+—cosxi)— (15

] 2
This is a set of equations determining the quantum fluctua-
tions of the particlesG={G;;}. G is a NXN symmetric
matrix that provides all the fluctuation information. Its diag-
onal elements give the variance of each particle, while its
off-diagonal elements give the covariance between particles,
from which we can calculate the correlation function of the
quantum fluctuation. These equations are coupled with the

expectation valué; .

Up to this point, we have obtainelx (N+1)/2+N
equations for all variables. These equations provide a quali-
tative picture about the system before we proceed with any
detailed numerical analysis. In fact, if we introduce a new

variable,l;,1=X;;1—X;, Eq.(13) can be cast into the map

lie1=1i+K; sinX;,
(16)
Xiv1=li1+X.

we can flnally obtain the expectation value of the Hami|-|n the same manner, by denOti@-%—lj:Gi-%—lj_Gij , we

tonianH,

can also write Eq.(14) into the form of a map
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Qi1+1j=Qij +(G(F—2));, T e =9
1 5 aMmc . 51 ST
Gi+1j=Gij+Qi+qj - 7 o )
The difference between the classical=0) and the quan- “ga- . 3
tum FK model is readily seen from E(L6). In the classical 2 2
case the control parameter, namely, the amplitude of the ex : N
ternal potential, does not change with the position index e
However, in the quantum case, due to the quantum fluctua °¢™ 57 3 3 5 & 7 7 3 3+ &5 ¢
tion, the amplitude of the effective external potential, which 0
acts on the particle, changes from particle to particle. Be- ’ »
causeG;; >0, for any nonzerdi, K;<K, which means that  os S os] * °
the quantum fluctuation reduces the external potential ] :
strength acting on the particle. Another important difference o.of "Joof
is that, in the classical case, the coordinates of the atoms il - '
the ground state are determined by the standard map-os{ . Coles] .
whereas in the quantum case they are determinedNy ( f s
+1) coupled two-dimensional maps. This makes the quan-+ot————————F——F— " T3 77 1 3
tum FK model extremely difficult to deal with analytically. X,
Before we turn to the numerical calculation, it is worth :
pointing out that in the case @=0 in Eq.(4), Gj; =1 (for 4
alli,j=1,2,..,N), which is the result of the coherent state
theory. It is obvious that this cannot be the case for a real >
guantum FK model. So, the coherent state is not suitable f0|02_
the study of the quantum FK model.
We now make some comparisons with the quantum
Monte Carlo(QMC) method. As mentioned before, finding | |, e e seumpencumers
the solution from two sets of equatiofiggs.(13) and (14)] o 1 2 3 4 5 6
is equivalent to finding the periodic orbit in a Xi

2(N+1)-dimensional mapEgs.(16) and(17)]. This is still
a big problem to be solved in nonlinear dynamics. Neverthe- FIG. 1. Comparison between the quantum Monte CEZMC)
. results(left-hand columih and the results from the squeezed state
less, we can make a numerical test for Ef3) to see . X > ;
. . . ) " ,theory [Eq. (13), right-hand columhin the supercritical regime,
whether this equation can give rise to the “sawtooth map _ o i
[6] whereK =5, with #=0.2. The abscissa is the average position of

In Fig. 1 we show the quantum Monte Carlo resulest the particle(mod 2m) at zero external potential.

column and the results calculated from E@.3) (right col-  struct the quantum Hull function and the quantgnfunc-
umn) by using the QMC'’s fluctuation da@;; in the super-  tjon, which is shown in the right-hand column of Fig. 1.
critical regime K=5), with% =0.2, for an incommensurate The results from Eq(13) (right-hand columphagree sur-
ground state. In our quantum Monte Carlo computation, agrisingly well with those from QMC for the quantum Hull
usual, we use the continued fraction expansion for the goldefunction as well as thg function. The most striking feature
mean winding numbery(5—1)/2. Thus, we us@ particles, to be noted is the sawtooth shape of théunction in the
which substrated int® external potentials, with a period of supercritical regime. This phenomenon was first observed by
2m. The periodic boundary condition is usgRef. [11]):  Borgonoviet al.[6] in their QMC computation, and has been
Xo+i=X;+27P. The winding number i$/Q. The results €xplained as a tunneling effect. Later on, Bemedral. [7]
shown in the figure are foP/Q=34/55. recovered this phenomenon by using a mean field theory,
By using the QMC calculation, we obtained the expectaincluding the contribution from quasidegenerate states. In the
tion value of the atom’s coordinate, from which we can con-ramework of the squeezed state theory, this quantum saw-
struct the so-called quantum Hull function, nameTy,(mod tooth map is just a straightforward result of Eg3), which

N results from the quantum fluctuations. Our result demon-
igc))vyr?rz:tutso F’:f}gﬁui?]p'?igerlb.eﬂg Ff,lfcti((r;o?/vﬁz?r’\ ;glhdlgf]inlg d strates that the squeezed state approach indeed captures the

by [6] effegts of quantum fIL_Jctuation_s. _
Finally, we would like to point out that the mechanism of

_w-lY  _ovw .Y the reduction of the effective potential, due to the quantum
9 =K (X1 = 2X Xi-), (18 fluctuations demonstrated above, can be applied to explain
is shown in the middle left of Fig. 1 from the QMC data. The the quantum suppression of chaos and relevant phenomena,
quantum fluctuatiorG;;, calculated from QMC, is shown such as dynamical localization, in quantum chaos. The dy-
also at the bottom-left of Fig. 1. namical localization is a well-established fact, it was ob-

To compare the squeezed state results with those frorserved numerically by Casatt al.[12] almost 20 years ago,

QMC, we substituteG;;, calculated from QMC, into Eq. and was confirmed recently in several different experiments,
(13), and then compute the expectation value of the particlessuch as hydrogen atoms in microwave fields, and spL8h
coordinates by using Aubry’s gradient method. We then conits underlying mechanism is still not completely understood.
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Here, we shall demonstrate that by applying the squeezed In conclusion, we have derived a set of coupled equations,
state approach to the kicked rotator, we could obtain a simpldetermining the expectation values of the coordinate and the
and clear picture of the dynamical localization. quantum fluctuations, by using the squeezed state as a trial
Using the squeezed state, we obtain a map, such as Egave function. The results from the squeezed state theory
(16), for the expectation value of the angular variable anddgree with those from the quantum Monte Carlo method
angular momentum. But the equation determin@gis dif-  duite well. Furthermore, the squeezed state results give us a
ferent from Eq.(14); in this case it can be numerically cal- Very clear understanding of the renormalization of the stan-
culated. We found that when the fluctuatiGn grows qua- _dard map in the classical case to the effective sawtooth map
dratically with time (kicks), eventually the strength of in the quantum case. Moreover, the squeezed state approach

external control parameté¢; becomes very small, thus the provides an alternative and a simple picture of the dynamical

classical chaos is completely suppressed and leads to ﬂl%cahzatlon observed in many quantum systems.

dynamical localization. This gives us an alternative explana- e would like to thank Drs. L. H. Tang and F. Borgonovi
tion and a very simple picture of the dynamical localization.for stimulating discussions. The work was supported in part
In turn, it shows that the squeezed state is a very useful todly grants from the Hong Kong Research Grants Council
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