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Quantum Frenkel-Kontorova model: A squeezed state approach
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The squeezed state is used to study the one-dimensional quantum mechanical Frenkel-Kontorova model. A
set of coupled equations for the particle’s expectation value and the fluctuations for the ground state are
derived. It is shown that quantum fluctuations renormalize the standard map to an effective sawtooth map. The
underlying mechanism provides an alternative and simple explanation of dynamical localization in quantum
chaos.@S1063-651X~98!50610-1#
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The Frenkel-Kontorova~FK! model describes an atomi
chain, connected by harmonic springs, subjected to an e
nal sinusoidal potential. This model has been widely use
model the crystal dislocations@1#, adsorbed epitaxial mono
layers@2#, and incommensurate structures@3#. The existence
of two competing periodicities may lead to a rich behavior
the state configurational properties of the particles@4#. The
application of the FK model to the study of transmission
Josephson junction and atomic-scale friction-nanoscale
bology, in which the quantum effects are very essential,
been witnessed in recent years@5#.

For a deep understanding of the nanoscale tribology,
very necessary to study the quantum FK model. Howeve
contrast to the classical FK model, up to now only a fe
works have been devoted to the effects of the quantum fl
tuations in the FK model@6,7#.

Like thermal fluctuations in classical systems at fin
temperatures, quantum fluctuations play a very import
role in quantum systems with finite\. In particular, they
become crucial and very important at zero temperature, w
thermal fluctuations vanish. The study of quantum fluct
tions becomes an important topic in quantum phase tra
tions @8# and quantum chaos.

Among many useful tools in study of quantum fluctu
tions, the squeezed state, which is a generalization of
coherent state, has been proven to be very useful in dea
with many-body problems@9,10#. In this Rapid Communica-
tion, we shall study the effect of quantum fluctuations in t
one-dimensional FK model by using the squeezed state
proach. As we shall see later, a set of coupled equations
the expectation value and the fluctuation of the particle w
be derived for the ground state at zero temperature. We
cover analytically how quantum fluctuations renormalize
external potential, which leads to the transition of the st
dard map in the classical FK model, to the sawtooth map
the quantum FK model. The results are found to be in go
agreement with that of the quantum Monte Carlo~QMC!
method.

The Hamiltonian operator of the one-dimensional st
dard FK model is

Ĥ5(
i

F p̂i
2

2m
1

g

2
~ x̂i 112 x̂i2a!22V cos~q0x̂i !G . ~1!
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Here,m is the mass of particle,g is the elastic constant of th
spring, and 2p/q0 is the period of external potential.V is the
strength of the external potential anda is the equilibrium
distance between two nearest neighbor particles as the e
nal potential vanishes. For convenience, we can rescale
variables into dimensionless ones and obtain a new Ha
tonian,

Ĥ5(
i

F P̂i
2

2
1

1

2
~X̂i 112X̂i2m!22K cos~X̂i !G , ~2!

whereK5Vq0
2/g is the rescaled strength of the external p

tential. The effective Planck constant\̃5\(q0
2/Amg), is the

ratio of the natural quantum energy scale (\v0) to the natu-
ral classical energy scale (g/q0

2), wherev0
25g/m.

The position and momentum operators for thei th particle
are written as

X̂i5A\̃

2
~ âi

†1âi !,

~3!

P̂i5 iA\̃

2
~ âi

†2âi !.

Here, âi
† and âi are boson creation and annihilation oper

tors, which satisfy the canonical commutation relation

@ âi ,â j
†#5d i j , @ âi ,â j #50, and@ âi

† ,â j
†#50.

The squeezed stateuF& is defined by the ordinary har
monic oscillator displacement operatoreŜ(a) acting on a
squeezed vacuum state,

uF~a,b!&5eŜ~a!eT̂~b!u0&, ~4!

where

Ŝ~a!5(
i

~a i âi
†2a i* âi !,

~5!

T̂~b!5
1

2 (
i j

~ âi
†b i j â j

†2âib i j
† â j !.
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u0& is the vacuum state and âi u0&50. Ŝ†(a)
52Ŝ(a),T̂†(b)52T̂(b). For simplicity, in what follows
we will use the abbreviationuF&5uF(a,b)&.

It must be noted that if we setb50, the squeezed state
reduced to the coherent state. As we shall see later, the
herent state is not able to allow us to study the fluctuatio

Using uF& as a trial wave function for Hamiltonian~2!, we
can easily find the expectation values of the coordinate
the momentum operators of thei th particle@9#,

X̄i[^FuX̂i uF&5A\̃

2
~a i* 1a i !,

~6!

P̄i[^FuP̂i uF&52 iA\̃

2
~a i* 2a i !.

Fluctuations in the coordinate and the momentum are gi
by

DXi
2[^Fu~X̂i2X̄i !

2uF&5\̃Gii ,

DPi
2[^Fu~ P̂i2 P̄i !

2uF&, ~7!

5\̃S Gii
21

4
14(

l ,k
P i l GlkPkiD .

The fluctuation covariance between thei th particle and the
j th particle is

DXiDXj[^Fu~X̂i2X̄i !~X̂j2X̄j !uF&5\̃Gi j , ~8!

whereGi j andP i j are

Gi j 5
1

2
~cosh2 Abb†1sinh2 Abb†! i j 1

1

2
~Mb1b†M ! i j ,

P i j 5
i

4
Gi j

21~Mb2b†M ! i j , ~9!

where

M5
sinhAbb† coshAbb†

Abb†
. ~10!

Sinceb is a symmetric matrix,Gi j 5Gji andP i j 5P j i . Fur-
thermore, using the following very important relation,

^Fucos X̂i uF&5expS 2
\̃

2
Gii D cos X̄i , ~11!

we can finally obtain the expectation value of the Ham
tonian Ĥ,
o-
s.

d

n

-

H̄[^FuĤuF&5(
i

1

2 F P̄i
21\̃S Gii

21

4
14(

l ,k
P i l GlkPkiD G

1(
i

1

2
~X̄i 112X̄i2m!21(

i

1

2
@ \̃~Gii 1Gi 11i 11!

22\̃Gi 11i #2(
i

K expS 2
\̃

2
Gii D cos X̄i . ~12!

It is worth noting that the variablesX̄i and P̄i , andGi j
and P i j form explicitly canonical conjugates@10#. To find
the ground state of the quantum FK model, we shall tak
variational approach, and these four variables are regarde
variational variables. Variation with respect toP̄i immedi-
ately yieldsP̄i50 and, with respect toX̄i , yields

X̄i 1122X̄i1X̄i 215Ki sin X̄i , ~13!

whereKi5K exp@2(\̃/2)Gii #, which determines the expec
tation value of the particle’s coordinate. Unlike its classic
counterpart~\̃50, Ki5K!, this equation is coupled with the
quantum fluctuation by\̃Gii . Since we are considering th
static problem, the variation with respect toP i j leads to
(kGikPk j50. To obtain equation forGi j , we first take the
variation with respect toGik and note the following relation
dGi j /dGkl5d ikd j l , whered ik andd j l are Diracd functions.
We then multiply both sides of the equation byGk j and take
the summation overk. Finally, we get the closed equation
for the covarianceGi j ,

~GF! i j 5Gi 21 j1Gi 11 j , ~14!

where

Fi j 5d i j S 11
Ki

2
cos X̄i D2

~G22! i j

8
. ~15!

This is a set of equations determining the quantum fluct
tions of the particlesG5$Gi j %. G is a N3N symmetric
matrix that provides all the fluctuation information. Its dia
onal elements give the variance of each particle, while
off-diagonal elements give the covariance between partic
from which we can calculate the correlation function of t
quantum fluctuation. These equations are coupled with
expectation valueX̄i .

Up to this point, we have obtainedN3(N11)/21N
equations for all variables. These equations provide a qu
tative picture about the system before we proceed with
detailed numerical analysis. In fact, if we introduce a n
variable,I i 115X̄i 112X̄i , Eq. ~13! can be cast into the ma

I i 115I i1Ki sin X̄i ,
~16!

X̄i 115I i 111X̄i .

In the same manner, by denotingQi 11 j5Gi 11 j2Gi j , we
can also write Eq. ~14! into the form of a map
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Qi 11 j5Qi j 1„G~F22!…i j ,
~17!

Gi 11 j5Gi j 1Qi 11 j .

The difference between the classical (\̃50) and the quan-
tum FK model is readily seen from Eq.~16!. In the classical
case the control parameter, namely, the amplitude of the
ternal potential, does not change with the position indexi .
However, in the quantum case, due to the quantum fluc
tion, the amplitude of the effective external potential, whi
acts on the particle, changes from particle to particle.
causeGii .0, for any nonzero\̃, Ki,K, which means that
the quantum fluctuation reduces the external poten
strength acting on the particle. Another important differen
is that, in the classical case, the coordinates of the atom
the ground state are determined by the standard m
whereas in the quantum case they are determined byN
11) coupled two-dimensional maps. This makes the qu
tum FK model extremely difficult to deal with analytically

Before we turn to the numerical calculation, it is wor
pointing out that in the case ofb50 in Eq. ~4!, Gi j 5

1
2 ~for

all i , j 51,2,...,N!, which is the result of the coherent sta
theory. It is obvious that this cannot be the case for a r
quantum FK model. So, the coherent state is not suitable
the study of the quantum FK model.

We now make some comparisons with the quant
Monte Carlo~QMC! method. As mentioned before, findin
the solution from two sets of equations@Eqs.~13! and ~14!#
is equivalent to finding the periodic orbit in
2(N11)-dimensional map@Eqs.~16! and ~17!#. This is still
a big problem to be solved in nonlinear dynamics. Nevert
less, we can make a numerical test for Eq.~13! to see
whether this equation can give rise to the ‘‘sawtooth ma
@6#.

In Fig. 1 we show the quantum Monte Carlo results~left
column! and the results calculated from Eq.~13! ~right col-
umn! by using the QMC’s fluctuation dataGii in the super-
critical regime (K55), with \̃50.2, for an incommensurat
ground state. In our quantum Monte Carlo computation,
usual, we use the continued fraction expansion for the gol
mean winding number (A521)/2. Thus, we useQ particles,
which substrated intoP external potentials, with a period o
2p. The periodic boundary condition is used~Ref. @11#!:
X̄Q1 i5X̄i12pP. The winding number isP/Q. The results
shown in the figure are forP/Q534/55.

By using the QMC calculation, we obtained the expec
tion value of the atom’s coordinate, from which we can co
struct the so-called quantum Hull function, namely,X̄i ~mod
2p! versus the unperturbed 2p iP/Q ~mod 2p!, which is
shown at top left in Fig. 1. Theg function, which is defined
by @6#

gi[K21~X̄i 1122X̄i1X̄i 21!, ~18!

is shown in the middle left of Fig. 1 from the QMC data. Th
quantum fluctuationGii , calculated from QMC, is shown
also at the bottom-left of Fig. 1.

To compare the squeezed state results with those f
QMC, we substituteGii , calculated from QMC, into Eq
~13!, and then compute the expectation value of the partic
coordinates by using Aubry’s gradient method. We then c
x-
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struct the quantum Hull function and the quantumg func-
tion, which is shown in the right-hand column of Fig. 1.

The results from Eq.~13! ~right-hand column! agree sur-
prisingly well with those from QMC for the quantum Hu
function as well as theg function. The most striking feature
to be noted is the sawtooth shape of theg function in the
supercritical regime. This phenomenon was first observed
Borgonoviet al. @6# in their QMC computation, and has bee
explained as a tunneling effect. Later on, Bermanet al. @7#
recovered this phenomenon by using a mean field the
including the contribution from quasidegenerate states. In
framework of the squeezed state theory, this quantum s
tooth map is just a straightforward result of Eq.~13!, which
results from the quantum fluctuations. Our result dem
strates that the squeezed state approach indeed capture
effects of quantum fluctuations.

Finally, we would like to point out that the mechanism
the reduction of the effective potential, due to the quant
fluctuations demonstrated above, can be applied to exp
the quantum suppression of chaos and relevant phenom
such as dynamical localization, in quantum chaos. The
namical localization is a well-established fact, it was o
served numerically by Casatiet al. @12# almost 20 years ago
and was confirmed recently in several different experime
such as hydrogen atoms in microwave fields, and so on@13#.
Its underlying mechanism is still not completely understoo

FIG. 1. Comparison between the quantum Monte Carlo~QMC!
results~left-hand column! and the results from the squeezed sta
theory @Eq. ~13!, right-hand column# in the supercritical regime,

whereK55, with \̃50.2. The abscissa is the average position
the particle~mod 2p! at zero external potential.
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Here, we shall demonstrate that by applying the squee
state approach to the kicked rotator, we could obtain a sim
and clear picture of the dynamical localization.

Using the squeezed state, we obtain a map, such as
~16!, for the expectation value of the angular variable a
angular momentum. But the equation determiningGii is dif-
ferent from Eq.~14!; in this case it can be numerically ca
culated. We found that when the fluctuationGii grows qua-
dratically with time ~kicks!, eventually the strength o
external control parameterKi becomes very small, thus th
classical chaos is completely suppressed and leads to
dynamical localization. This gives us an alternative expla
tion and a very simple picture of the dynamical localizatio
In turn, it shows that the squeezed state is a very useful
in the study of the phenomena related to the quantum fl
tuations.
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In conclusion, we have derived a set of coupled equatio
determining the expectation values of the coordinate and
quantum fluctuations, by using the squeezed state as a
wave function. The results from the squeezed state the
agree with those from the quantum Monte Carlo meth
quite well. Furthermore, the squeezed state results give
very clear understanding of the renormalization of the st
dard map in the classical case to the effective sawtooth m
in the quantum case. Moreover, the squeezed state appr
provides an alternative and a simple picture of the dynam
localization observed in many quantum systems.
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